Sains Malaysiana 54(3)(2025): 899-911

http://doi.org/10.17576/jsm-2025-5403-21

 

Cellulose Nanocrystals and Zinc Oxide in Pineapple Starch Films for Enhanced Banana Shelf-Life

(Nanokristal Selulosa dan Zink Oksida dalam Filem Kanji Nanas untuk Jangka Hayat Pisang yang Dipertingkatkan)

 

LANHAO LI1, SIEW XIAN CHIN2,3, PORNCHAI RACHTANAPUN4, TAWEECHAI AMORNSAKCHAI5, POI SIM KHIEW6, SHAHARIAR CHOWDHURY7, SARANI ZAKARIA1 & CHIN HUA CHIA1,3,*

 

1Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2ASASIpintar Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Quantum Materials and Technology Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Faculty of Agro-Industry, Chiang Mai University, 50100 Chiang Mai, Thailand

5Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Payathai, 10400 Bangkok, Thailand

6Center of Nanotechnology and Advanced Materials, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia

7Faculty of Environmental Management, Prince of Songkla University, 90110 Hatyai Songkhla, Thailand

 

Diserahkan: 14 Oktober 2024/Diterima: 21 November 2024

 

Abstract

This study investigates the development of biodegradable films from pineapple stem starch enhanced with cellulose nanocrystals (CNC) and zinc oxide (ZnO) nanoparticles for improved food preservation. The film-forming behavior of pineapple stem starch was examined with varying concentrations of glycerol (0-30%), CNC (0-1.5%), and ZnO (0-20%). Rheological measurements showed that glycerol concentrations significantly influenced the viscoelastic properties of the starch solutions, with a notable peak in viscosity observed at 20% glycerol. The addition of CNC increased the storage modulus (G') and viscosity of the starch solutions, indicating enhanced structural integrity. ZnO nanoparticles imparted effective UV-blocking capabilities to the films, with optimal performance observed at 10% concentration. Water vapor permeability (WVP) of the films slightly increased with ZnO content, ranging from 0.0127 to 0.0157 g·m⁻¹·h⁻¹·Pa⁻¹. Scanning electron microscopy (SEM) analysis showed uniform dispersion of ZnO nanoparticles within the starch matrix. The ZnO-enhanced starch coatings effectively extended the shelf life of bananas by delaying the ripening process. This study demonstrates the potential of pineapple stem starch-based films enhanced with CNC and ZnO as a sustainable and effective solution for food packaging, contributing to reduced food waste and environmental impact.

Keywords: Biodegradable films; cellulose nanocrystals; food preservation; starch

 

Abstrak

Penyelidikan ini mengkaji pembangunan filem terbiodegradasi daripada kanji batang nanas yang dipertingkatkan dengan nanokristal selulosa (CNC) dan nanozarah zink oksida (ZnO) untuk pengawetan makanan yang lebih baik. Tingkah laku pembentukan filem kanji batang nanas dikaji dengan pelbagai kepekatan gliserol (0-30%), CNC (0-1.5%) dan ZnO (0-20%). Pengukuran reologi menunjukkan bahawa kepekatan gliserol mempengaruhi sifat viskoelastik larutan kanji secara signifikan dengan peningkatan ketara dalam kelikatan diperhatikan pada 20% gliserol. Penambahan CNC meningkatkan modulus penyimpanan (G') dan kelikatan larutan kanji, menunjukkan peningkatan integriti struktur. Nanozarah ZnO memberikan keupayaan menghalang UV yang berkesan kepada filem, dengan prestasi optimum diperhatikan pada kepekatan 10%. Kebolehtelapan wap air (WVP) filem sedikit meningkat dengan kandungan ZnO, berkisar antara 0.0127 hingga 0.0157 g·m⁻¹·j⁻¹·Pa⁻¹. Analisis mikroskopi elektron imbasan (SEM) menunjukkan penyebaran seragam nanozarah ZnO dalam matriks kanji. Salutan kanji yang dipertingkatkan dengan ZnO berkesan memanjangkan jangka hayat pisang dengan melambatkan proses peranuman. Kajian ini menunjukkan potensi filem berasaskan kanji batang nanas yang dipertingkatkan dengan CNC dan ZnO sebagai penyelesaian yang lestari dan berkesan untuk pembungkusan makanan, menyumbang kepada pengurangan sisa makanan dan kesan alam sekitar.

Kata kunci: Filem terbiodegradasi; kanji; nanohablur selulosa; pengawetan makanan

 

REFERENCES

Amrutha, K. & Warrier, A.K. 2020. The first report on the source-to-sink characterization of microplastic pollution from a riverine environment in tropical India. Science of The Total Environment 739: 140377. https://doi.org/10.1016/j.scitotenv.2020.140377

Bangar, S.P., Whiteside, W.S., Ashogbon, A.O. & Kumar, M. 2021. Recent advances in thermoplastic starches for food packaging: A review. Food Packaging and Shelf Life 30: 100743. https://doi.org/10.1016/j.fpsl.2021.100743

Bumrungnok, K., Threepopnatkul, P., Amornsakchai, T., Chia, C.H., Wongsagonsup, R. & Smith, S.M. 2023. Toward a circular bioeconomy: Exploring pineapple stem starch film as protective coating for fruits and vegetables. Polymers 15(11): 2493. https://doi.org/10.3390/polym15112493

Caicedo, C., Díaz-Cruz, C.A., Jiménez-Regalado, E.J., Caicedo, C., Alonso Díaz-Cruz, C., Jiménez-Regalado, E.J. & Aguirre-Loredo, R.Y. 2022. Effect of plasticizer content on mechanical and water vapor permeability of maize starch/PVOH/chitosan composite films. Materials 15(4): 1274. https://doi.org/10.3390/MA15041274

Chen, X., Guo, L., Du, X., Chen, P., Ji, Y., Hao, H. & Xu, X. 2017. Investigation of glycerol concentration on corn starch morphologies and gelatinization behaviours during heat treatment. Carbohydrate Polymers 176: 56-64. https://doi.org/10.1016/J.CARBPOL.2017.08.062

Cheng, H., Chen, L., McClements, D.J., Yang, T., Zhang, Z., Ren, F., Miao, M., Tian, Y. & Jin, Z. 2021. Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends in Food Science & Technology 114: 70-82. https://doi.org/10.1016/j.tifs.2021.05.017

Chouhan, S., Bajpai, A.K., Bajpai, J., Katare, R. & Dhoble, S.J. 2017. Mechanical and UV absorption behavior of zinc oxide nanoparticles: Reinforced poly(vinyl alcohol-g-acrylonitrile) nanocomposite films. Polymer Bulletin 74(10): 4119-4141. https://doi.org/10.1007/S00289-017-1942-1/METRICS

do Val Siqueira, L., La Fuente Arias, C.I., Maniglia, B.C. & Tadini, C.C. 2021. Starch-based biodegradable plastics: Methods of production, challenges and future perspectives. Current Opinion in Food Science 38: 122-130. https://doi.org/10.1016/J.COFS.2020.10.020

Duan, X., Liu, Q., Zhao, R., Liu, W., Zhang, L. & Hu, H. 2024. Effects of particle properties, intermolecular forces, and molecular structure on the shear-thickening behavior of waxy starch dispersions. Carbohydrate Polymers 334: 122004. https://doi.org/10.1016/J.CARBPOL.2024.122004

El Miri, N., Abdelouahdi, K., Barakat, A., Zahouily, M., Fihri, A., Solhy, A. & El Achaby, M. 2015. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydrate Polymers 129: 156-167. https://doi.org/10.1016/J.CARBPOL.2015.04.051

Florjani, U., Zupani, A. & Žumer, M. 2002. Rheological characterization of aqueous polysaccharide mixtures undergoing shear. Chemical and Biochemical Engineering Quarterly 16: 105-118. https://api.semanticscholar.org/CorpusID:97251752

Hager, A-S., Vallons, K.J.R. & Arendt, E.K. 2012. Influence of gallic acid and tannic acid on the mechanical and barrier properties of wheat gluten films. Journal of Agricultural and Food Chemistry 60(24): 6157-6163. https://doi.org/10.1021/jf300983m

Huang, X.J., Zeng, X.F., Wang, J.X., Zhang, L.L. & Chen, J.F. 2019. Synthesis of monodispersed ZnO@SiO2 nanoparticles for anti-UV aging application in highly transparent polymer-based nanocomposites. Journal of Materials Science 54(11): 8581-8590. https://doi.org/10.1007/s10853-019-03393-z

Irede, E.L., Awoyemi, R.F., Owolabi, B., Aworinde, O.R., Kajola, R.O., Hazeez, A., Raji, A.A., Ganiyu, L.O., Onukwuli, C.O., Onivefu, A.P. & Ifijen, I.H. 2024. Cutting-edge developments in zinc oxide nanoparticles: Synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions. RSC Advances 14(29): 20992-21034. https://doi.org/10.1039/D4RA02452D

Jiang, B., Li, S., Wu, Y., Song, J., Chen, S., Li, X. & Sun, H. 2018. Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder. CYTA - Journal of Food 16(1): 1045-1054. https://doi.org/10.1080/19476337.2018.1527783

Kurniawan, S.B., Abdullah, S.R.S., Imron, M.F. & Ismail, N. 2021. Current state of marine plastic pollution and its technology for more eminent evidence: A review. Journal of Cleaner Production 278: 123537. https://doi.org/10.1016/j.jclepro.2020.123537

Law, K.L. & Narayan, R. 2021. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nature Reviews Materials 7(2): 104-116. https://doi.org/10.1038/s41578-021-00382-0

MacLeod, M., Arp, H.P.H., Tekman, M.B. & Jahnke, A. 2021. The global threat from plastic pollution. Science 373(6550): 61-65. https://doi.org/10.1126/science.abg5433

Matalanis, A.M., Campanella, O.H. & Hamaker, B.R. 2009. Storage retrogradation behavior of sorghum, maize and rice starch pastes related to amylopectin fine structure. Journal of Cereal Science 50(1): 74-81. https://doi.org/10.1016/j.jcs.2009.02.007

Medeiros S., Dias, V., Macedo, M.C.C., Rodrigues, C.G., dos Santos, A.N., de Freitas e Loyola, A.C. & Fante, C.A. 2020. Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Bioscience 38: 100750. https://doi.org/https://doi.org/10.1016/j.fbio.2020.100750

Menzel, C. 2020. Improvement of starch films for food packaging through a three-principle approach: Antioxidants, cross-linking and reinforcement. Carbohydrate Polymers 250: 116828. https://doi.org/10.1016/j.carbpol.2020.116828

Mertins, O., Mathews, P.D., Gomide, A.B., Baptista, M.S. & Itri, R. 2015. Effective protection of biological membranes against photo-oxidative damage: Polymeric antioxidant forming a protecting shield over the membrane. Biochimica et Biophysica Acta (BBA) - Biomembranes 1848(10): 2180-2187. https://doi.org/10.1016/J.BBAMEM.2015.06.005

Muscat, D., Adhikari, B., Adhikari, R. & Chaudhary, D.S. 2012. Comparative study of film forming behaviour of low and high amylose starches using glycerol and xylitol as plasticizers. Journal of Food Engineering 109(2): 189-201. https://doi.org/10.1016/j.jfoodeng.2011.10.019

Onyeaka, H., Obileke, K., Makaka, G. & Nwokolo, N. 2022. Current research and applications of starch-based biodegradable films for food packaging. Polymers 14(6): 1126. https://doi.org/10.3390/polym14061126

Rodriguez-Gonzalez, F.J., Ramsay, B.A. & Favis, B.D. 2004. Rheological and thermal properties of thermoplastic starch with high glycerol content. Carbohydrate Polymers 58(2): 139-147. https://doi.org/10.1016/J.CARBPOL.2004.06.002

Rosalina, I. & Bhattacharya, M. 2002. Dynamic rheological measurements and analysis of starch gels. Carbohydrate Polymers 48(2): 191-202. https://doi.org/10.1016/S0144-8617(01)00235-1

Ruzanna Ahmad Shapii, Siti Hajar Othman, Roseliza Kadir Basha & Mohd Nazli Naim. 2022. Mechanical, thermal, and barrier properties of starch films incorporated with chitosan nanoparticles. Nanotechnology Reviews 11(1): 1464-1477. https://doi.org/10.1515/ntrev-2022-0094

Safinta Nurindra Rahmadhia, Afist Azkiya Sidqi & Yanas Anggana Saputra. 2023. Physical properties of tapioca starch-based film indicators with anthocyanin extract from purple sweet potato (Ipomoea batatas L.) and response to pH changes. Sains Malaysiana 52(6): 1685-1697. https://doi.org/10.17576/jsm-2023-5206-06

Smith, A.M. & Zeeman, S.C. 2020. Starch: A flexible, adaptable carbon store coupled to plant growth. Annual Review of Plant Biology 71(1): 217-245. https://doi.org/10.1146/annurev-arplant-050718-100241

Sriprablom, J., Suphantharika, M., Smith, S.M., Amornsakchai, T., Pinyo, J. & Wongsagonsup, R. 2023. Physicochemical, rheological, in-vitro digestibility, and emulsifying properties of starch extracted from pineapple stem agricultural waste. Foods 12(10): 2028. https://doi.org/10.3390/foods12102028

Tabassi, N., Moghbeli, M.R. & Ghasemi, I. 2016. Thermoplastic starch/cellulose nanocrystal green composites prepared in an internal mixer. Iranian Polymer Journal (English Edition) 25(1): 45-57. https://doi.org/10.1007/s13726-015-0398-0

Taghizadeh, A. & Favis, B.D. 2013. Effect of high molecular weight plasticizers on the gelatinization of starch under static and shear conditions. Carbohydrate Polymers 92(2): 1799-1808. https://doi.org/10.1016/j.carbpol.2012.11.018

Tajuddin, S., Xie, F., Nicholson, T.M., Liu, P. & Halley, P.J. 2011. Rheological properties of thermoplastic starch studied by multipass rheometer. Carbohydrate Polymers 83(2): 914-919. https://doi.org/10.1016/j.carbpol.2010.08.073

Tako, M. & Hizukuri, S. 2003. Rheological properties of wheat (halberd) amylopectin. Starch/Staerke 55(8): 345-349. https://doi.org/10.1002/star.200300138

Tang, Y., Liu, Y., Chen, Y., Zhang, W., Zhao, J., He, S., Yang, C., Zhang, T., Tang, C., Zhang, C. & Yang, Z. 2021. A review: Research progress on microplastic pollutants in aquatic environments. Science of The Total Environment 766: 142572. https://doi.org/10.1016/j.scitotenv.2020.142572

Tankhiwale, R. & Bajpai, S.K. 2012. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids and Surfaces B: Biointerfaces 90(1): 16-20. https://doi.org/10.1016/j.colsurfb.2011.09.031

Ummi Habibah Abdullah, Muhammad Jefri Mohd Yusof, Ainon Hamzah & Ishak Ahmad. 2022. Starch film incorporated with cinnamon oils optimally prepared by using response surface methodology. Sains Malaysiana 51(9): 2925-2935. https://doi.org/10.17576/jsm-2022-5109-15

Valencia, G.A., Agudelo, A.C. & Zapata, R. 2013. Effect of glycerol concentration and temperature on the rheological properties of cassava starch solutions. Journal of Polymer Engineering 33(2): 141-148. https://doi.org/10.1515/POLYENG-2012-0129/MACHINEREADABLECITATION/RIS

Vieira, I.M.M., Santos, B.L.P., Santos, C.V.M., Ruzene, D.S. & Silva, D.P. 2022. Valorization of pineapple waste: A review on how the fruit’s potential can reduce residue generation. BioEnergy Research 15(2): 924-934. https://doi.org/10.1007/s12155-021-10318-9

Yuan, Z., Nag, R. & Cummins, E. 2022. Human health concerns regarding microplastics in the aquatic environment - From marine to food systems. Science of The Total Environment 823: 153730. https://doi.org/10.1016/j.scitotenv.2022.153730

Zhang, Q., Song, Y. & Zheng, Q. 2008. Rheological behaviors and mechanical properties of gluten-starch-glycerol composites. Acta Polymerica Sinica 2: 136-140. https://doi.org/10.3724/SP.J.1105.2008.00136

 

*Corresponding author; email: chia@ukm.edu.my

 

 

 

 

 

 

 

 

           

sebelumnya