Sains Malaysiana 54(3)(2025): 899-911
http://doi.org/10.17576/jsm-2025-5403-21
Cellulose Nanocrystals and Zinc
Oxide in Pineapple Starch Films for Enhanced Banana Shelf-Life
(Nanokristal Selulosa dan Zink Oksida dalam Filem Kanji Nanas untuk Jangka Hayat Pisang yang Dipertingkatkan)
LANHAO LI1, SIEW
XIAN CHIN2,3, PORNCHAI RACHTANAPUN4, TAWEECHAI
AMORNSAKCHAI5, POI SIM KHIEW6, SHAHARIAR CHOWDHURY7,
SARANI ZAKARIA1 & CHIN HUA CHIA1,3,*
1Materials Science
Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor, Malaysia
2ASASIpintar
Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
3Quantum Materials
and Technology Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
4Faculty of
Agro-Industry, Chiang Mai University, 50100 Chiang Mai, Thailand
5Department of
Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Payathai, 10400 Bangkok, Thailand
6Center of
Nanotechnology and Advanced Materials, Faculty of Engineering, University of
Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
7Faculty of Environmental
Management, Prince of Songkla University, 90110 Hatyai Songkhla, Thailand
Diserahkan: 14 Oktober 2024/Diterima: 21 November 2024
Abstract
This study
investigates the development of biodegradable films from pineapple stem starch
enhanced with cellulose nanocrystals (CNC) and zinc oxide (ZnO) nanoparticles
for improved food preservation. The film-forming behavior of pineapple stem
starch was examined with varying concentrations of glycerol (0-30%), CNC
(0-1.5%), and ZnO (0-20%). Rheological measurements showed that glycerol
concentrations significantly influenced the viscoelastic properties of the
starch solutions, with a notable peak in viscosity observed at 20% glycerol.
The addition of CNC increased the storage modulus (G') and viscosity of the
starch solutions, indicating enhanced structural integrity. ZnO nanoparticles
imparted effective UV-blocking capabilities to the films, with optimal performance
observed at 10% concentration. Water vapor permeability (WVP) of the films
slightly increased with ZnO content, ranging from 0.0127 to 0.0157
g·m⁻¹·h⁻¹·Pa⁻¹. Scanning electron microscopy (SEM) analysis
showed uniform dispersion of ZnO nanoparticles within the starch matrix. The
ZnO-enhanced starch coatings effectively extended the shelf life of bananas by
delaying the ripening process. This study demonstrates the potential of
pineapple stem starch-based films enhanced with CNC and ZnO as a sustainable
and effective solution for food packaging, contributing to reduced food waste
and environmental impact.
Keywords: Biodegradable
films; cellulose nanocrystals; food preservation; starch
Abstrak
Penyelidikan ini mengkaji pembangunan filem terbiodegradasi daripada kanji batang nanas yang dipertingkatkan dengan nanokristal selulosa (CNC) dan nanozarah zink oksida (ZnO) untuk pengawetan makanan yang lebih baik. Tingkah laku pembentukan filem kanji batang nanas dikaji dengan pelbagai kepekatan gliserol (0-30%),
CNC (0-1.5%) dan ZnO (0-20%). Pengukuran reologi menunjukkan bahawa kepekatan gliserol mempengaruhi sifat viskoelastik larutan kanji secara signifikan dengan peningkatan ketara dalam kelikatan diperhatikan pada 20% gliserol. Penambahan CNC meningkatkan modulus penyimpanan (G') dan kelikatan larutan
kanji, menunjukkan peningkatan integriti struktur. Nanozarah ZnO memberikan
keupayaan menghalang UV yang berkesan kepada filem, dengan prestasi optimum
diperhatikan pada kepekatan 10%. Kebolehtelapan wap air (WVP) filem sedikit
meningkat dengan kandungan ZnO, berkisar antara 0.0127 hingga 0.0157
g·m⁻¹·j⁻¹·Pa⁻¹. Analisis mikroskopi elektron imbasan (SEM)
menunjukkan penyebaran seragam nanozarah ZnO dalam matriks kanji. Salutan kanji
yang dipertingkatkan dengan ZnO berkesan memanjangkan jangka hayat pisang
dengan melambatkan proses peranuman. Kajian ini menunjukkan potensi filem
berasaskan kanji batang nanas yang dipertingkatkan dengan CNC dan ZnO sebagai
penyelesaian yang lestari dan berkesan untuk pembungkusan makanan, menyumbang
kepada pengurangan sisa makanan dan kesan alam sekitar.
Kata kunci: Filem
terbiodegradasi; kanji; nanohablur selulosa; pengawetan makanan
REFERENCES
Amrutha, K. & Warrier,
A.K. 2020. The first report on the source-to-sink characterization of
microplastic pollution from a riverine environment in tropical India. Science
of The Total Environment 739: 140377.
https://doi.org/10.1016/j.scitotenv.2020.140377
Bangar, S.P.,
Whiteside, W.S., Ashogbon, A.O. & Kumar, M. 2021.
Recent advances in thermoplastic starches for food packaging: A review. Food
Packaging and Shelf Life 30: 100743. https://doi.org/10.1016/j.fpsl.2021.100743
Bumrungnok, K., Threepopnatkul, P., Amornsakchai,
T., Chia, C.H., Wongsagonsup, R. & Smith, S.M.
2023. Toward a circular bioeconomy: Exploring
pineapple stem starch film as protective coating for fruits and vegetables. Polymers 15(11): 2493. https://doi.org/10.3390/polym15112493
Caicedo, C.,
Díaz-Cruz, C.A., Jiménez-Regalado, E.J., Caicedo,
C., Alonso Díaz-Cruz, C., Jiménez-Regalado, E.J. & Aguirre-Loredo, R.Y. 2022. Effect of plasticizer content on
mechanical and water vapor permeability of maize starch/PVOH/chitosan composite
films. Materials 15(4): 1274. https://doi.org/10.3390/MA15041274
Chen, X., Guo, L., Du, X., Chen, P., Ji, Y., Hao, H.
& Xu, X. 2017. Investigation of glycerol concentration on corn starch
morphologies and gelatinization behaviours during heat treatment. Carbohydrate
Polymers 176: 56-64. https://doi.org/10.1016/J.CARBPOL.2017.08.062
Cheng, H., Chen, L., McClements, D.J., Yang, T.,
Zhang, Z., Ren, F., Miao, M., Tian, Y. & Jin, Z.
2021. Starch-based biodegradable packaging materials: A review of their
preparation, characterization and diverse applications in the food industry. Trends
in Food Science & Technology 114: 70-82.
https://doi.org/10.1016/j.tifs.2021.05.017
Chouhan, S., Bajpai, A.K., Bajpai, J., Katare, R. & Dhoble, S.J.
2017. Mechanical and UV absorption behavior of zinc
oxide nanoparticles: Reinforced poly(vinyl
alcohol-g-acrylonitrile) nanocomposite films. Polymer Bulletin 74(10):
4119-4141. https://doi.org/10.1007/S00289-017-1942-1/METRICS
do Val Siqueira, L., La Fuente Arias, C.I., Maniglia, B.C. & Tadini, C.C.
2021. Starch-based biodegradable plastics: Methods of production, challenges
and future perspectives. Current Opinion in Food Science 38: 122-130.
https://doi.org/10.1016/J.COFS.2020.10.020
Duan, X.,
Liu, Q., Zhao, R., Liu, W., Zhang, L. & Hu, H. 2024. Effects of particle
properties, intermolecular forces, and molecular structure on the
shear-thickening behavior of waxy starch dispersions. Carbohydrate Polymers 334: 122004.
https://doi.org/10.1016/J.CARBPOL.2024.122004
El Miri, N., Abdelouahdi,
K., Barakat, A., Zahouily, M., Fihri,
A., Solhy, A. & El Achaby,
M. 2015. Bio-nanocomposite films reinforced with cellulose nanocrystals:
Rheology of film-forming solutions, transparency, water vapor barrier and
tensile properties of films. Carbohydrate Polymers 129: 156-167.
https://doi.org/10.1016/J.CARBPOL.2015.04.051
Florjani, U., Zupani, A. & Žumer, M. 2002.
Rheological characterization of aqueous polysaccharide mixtures undergoing
shear. Chemical and Biochemical Engineering Quarterly 16: 105-118.
https://api.semanticscholar.org/CorpusID:97251752
Hager, A-S., Vallons,
K.J.R. & Arendt, E.K. 2012. Influence of gallic acid and tannic acid on the
mechanical and barrier properties of wheat gluten films. Journal of
Agricultural and Food Chemistry 60(24): 6157-6163.
https://doi.org/10.1021/jf300983m
Huang, X.J., Zeng, X.F., Wang, J.X., Zhang, L.L.
& Chen, J.F. 2019. Synthesis of monodispersed ZnO@SiO2 nanoparticles for anti-UV aging application in highly transparent polymer-based
nanocomposites. Journal of Materials Science 54(11): 8581-8590.
https://doi.org/10.1007/s10853-019-03393-z
Irede, E.L., Awoyemi, R.F., Owolabi, B., Aworinde,
O.R., Kajola, R.O., Hazeez,
A., Raji, A.A., Ganiyu, L.O., Onukwuli, C.O., Onivefu, A.P. & Ifijen, I.H.
2024. Cutting-edge developments in zinc oxide nanoparticles: Synthesis and
applications for enhanced antimicrobial and UV protection in healthcare
solutions. RSC Advances 14(29): 20992-21034.
https://doi.org/10.1039/D4RA02452D
Jiang, B., Li, S., Wu, Y., Song, J., Chen, S., Li,
X. & Sun, H. 2018. Preparation and characterization of natural corn
starch-based composite films reinforced by eggshell powder. CYTA - Journal
of Food 16(1): 1045-1054. https://doi.org/10.1080/19476337.2018.1527783
Kurniawan, S.B., Abdullah, S.R.S., Imron, M.F. & Ismail, N. 2021. Current state of marine
plastic pollution and its technology for more eminent evidence: A review. Journal
of Cleaner Production 278: 123537.
https://doi.org/10.1016/j.jclepro.2020.123537
Law, K.L. & Narayan, R. 2021. Reducing
environmental plastic pollution by designing polymer materials for managed
end-of-life. Nature Reviews Materials 7(2): 104-116.
https://doi.org/10.1038/s41578-021-00382-0
MacLeod, M., Arp, H.P.H., Tekman,
M.B. & Jahnke, A. 2021. The global threat from plastic pollution. Science 373(6550): 61-65. https://doi.org/10.1126/science.abg5433
Matalanis, A.M.,
Campanella, O.H. & Hamaker, B.R. 2009. Storage
retrogradation behavior of sorghum, maize and rice
starch pastes related to amylopectin fine structure. Journal of Cereal
Science 50(1): 74-81. https://doi.org/10.1016/j.jcs.2009.02.007
Medeiros S., Dias, V., Macedo, M.C.C., Rodrigues,
C.G., dos Santos, A.N., de Freitas e Loyola, A.C. & Fante,
C.A. 2020. Biodegradable edible films of ripe banana peel and starch enriched
with extract of Eriobotrya japonica leaves. Food Bioscience 38: 100750.
https://doi.org/https://doi.org/10.1016/j.fbio.2020.100750
Menzel, C. 2020. Improvement of starch films for
food packaging through a three-principle approach: Antioxidants, cross-linking
and reinforcement. Carbohydrate Polymers 250: 116828.
https://doi.org/10.1016/j.carbpol.2020.116828
Mertins, O.,
Mathews, P.D., Gomide, A.B., Baptista, M.S. & Itri, R. 2015. Effective protection of biological membranes
against photo-oxidative damage: Polymeric antioxidant forming a protecting
shield over the membrane. Biochimica et Biophysica Acta (BBA) - Biomembranes 1848(10): 2180-2187. https://doi.org/10.1016/J.BBAMEM.2015.06.005
Muscat, D., Adhikari, B., Adhikari, R. &
Chaudhary, D.S. 2012. Comparative study of film forming behaviour of low and
high amylose starches using glycerol and xylitol as plasticizers. Journal of
Food Engineering 109(2): 189-201.
https://doi.org/10.1016/j.jfoodeng.2011.10.019
Onyeaka, H., Obileke, K., Makaka, G. & Nwokolo, N. 2022. Current research and applications of
starch-based biodegradable films for food packaging. Polymers 14(6):
1126. https://doi.org/10.3390/polym14061126
Rodriguez-Gonzalez, F.J., Ramsay, B.A. & Favis, B.D. 2004. Rheological and thermal properties of
thermoplastic starch with high glycerol content. Carbohydrate Polymers 58(2): 139-147. https://doi.org/10.1016/J.CARBPOL.2004.06.002
Rosalina, I. & Bhattacharya, M. 2002. Dynamic
rheological measurements and analysis of starch gels. Carbohydrate Polymers 48(2): 191-202. https://doi.org/10.1016/S0144-8617(01)00235-1
Ruzanna Ahmad Shapii, Siti Hajar Othman, Roseliza Kadir Basha & Mohd Nazli Naim. 2022. Mechanical,
thermal, and barrier properties of starch films incorporated with chitosan
nanoparticles. Nanotechnology Reviews 11(1): 1464-1477.
https://doi.org/10.1515/ntrev-2022-0094
Safinta Nurindra Rahmadhia, Afist Azkiya Sidqi & Yanas Anggana Saputra. 2023. Physical properties of tapioca starch-based
film indicators with anthocyanin extract from purple sweet potato (Ipomoea
batatas L.) and response to pH changes. Sains Malaysiana 52(6): 1685-1697.
https://doi.org/10.17576/jsm-2023-5206-06
Smith, A.M. & Zeeman, S.C. 2020. Starch: A
flexible, adaptable carbon store coupled to plant growth. Annual Review of
Plant Biology 71(1): 217-245.
https://doi.org/10.1146/annurev-arplant-050718-100241
Sriprablom, J., Suphantharika, M., Smith, S.M., Amornsakchai,
T., Pinyo, J. & Wongsagonsup,
R. 2023. Physicochemical, rheological, in-vitro digestibility, and
emulsifying properties of starch extracted from pineapple stem agricultural
waste. Foods 12(10): 2028. https://doi.org/10.3390/foods12102028
Tabassi, N., Moghbeli, M.R. & Ghasemi, I.
2016. Thermoplastic starch/cellulose nanocrystal green composites prepared in
an internal mixer. Iranian Polymer Journal (English Edition) 25(1):
45-57. https://doi.org/10.1007/s13726-015-0398-0
Taghizadeh, A.
& Favis, B.D. 2013. Effect of high molecular
weight plasticizers on the gelatinization of starch under static and shear
conditions. Carbohydrate Polymers 92(2): 1799-1808.
https://doi.org/10.1016/j.carbpol.2012.11.018
Tajuddin, S., Xie, F., Nicholson, T.M., Liu, P. & Halley, P.J. 2011.
Rheological properties of thermoplastic starch studied by multipass rheometer. Carbohydrate Polymers 83(2): 914-919.
https://doi.org/10.1016/j.carbpol.2010.08.073
Tako, M.
& Hizukuri, S. 2003. Rheological properties of
wheat (halberd) amylopectin. Starch/Staerke 55(8): 345-349. https://doi.org/10.1002/star.200300138
Tang, Y., Liu, Y., Chen, Y., Zhang, W., Zhao, J.,
He, S., Yang, C., Zhang, T., Tang, C., Zhang, C. & Yang, Z. 2021. A review:
Research progress on microplastic pollutants in aquatic environments. Science
of The Total Environment 766: 142572.
https://doi.org/10.1016/j.scitotenv.2020.142572
Tankhiwale, R.
& Bajpai, S.K. 2012. Preparation, characterization and antibacterial
applications of ZnO-nanoparticles coated polyethylene
films for food packaging. Colloids and Surfaces B: Biointerfaces 90(1): 16-20. https://doi.org/10.1016/j.colsurfb.2011.09.031
Ummi Habibah Abdullah, Muhammad Jefri Mohd Yusof, Ainon Hamzah &
Ishak Ahmad. 2022. Starch film incorporated with cinnamon oils optimally
prepared by using response surface methodology. Sains Malaysiana 51(9): 2925-2935.
https://doi.org/10.17576/jsm-2022-5109-15
Valencia, G.A., Agudelo,
A.C. & Zapata, R. 2013. Effect of glycerol concentration and temperature on
the rheological properties of cassava starch solutions. Journal of Polymer
Engineering 33(2): 141-148.
https://doi.org/10.1515/POLYENG-2012-0129/MACHINEREADABLECITATION/RIS
Vieira, I.M.M., Santos, B.L.P., Santos, C.V.M., Ruzene, D.S. & Silva, D.P. 2022. Valorization of pineapple waste: A review on how the fruit’s potential can reduce residue
generation. BioEnergy Research 15(2):
924-934. https://doi.org/10.1007/s12155-021-10318-9
Yuan, Z., Nag, R. & Cummins, E. 2022. Human
health concerns regarding microplastics in the aquatic environment - From
marine to food systems. Science of The Total Environment 823: 153730.
https://doi.org/10.1016/j.scitotenv.2022.153730
Zhang, Q., Song, Y. & Zheng, Q. 2008.
Rheological behaviors and mechanical properties of
gluten-starch-glycerol composites. Acta Polymerica Sinica 2: 136-140. https://doi.org/10.3724/SP.J.1105.2008.00136
*Corresponding author; email: chia@ukm.edu.my